Solving the Temporal Knapsack Problem via Recursive Dantzig-Wolfe Reformulation

نویسندگان

  • Alberto Caprara
  • Fabio Furini
  • Enrico Malaguti
  • Emiliano Traversi
چکیده

The Temporal Knapsack Problem (TKP) is a generalization of the standard Knapsack Problem where a time horizon is considered, and each item consumes the knapsack capacity during a limited time interval only. In this paper we solve the TKP using what we call a Recursive Dantzig-Wolfe Reformulation (DWR) method. The generic idea of Recursive DWR is to solve a Mixed Integer Program (MIP) by recursively applying DWR, i.e., by using DWR not only for solving the original MIP but also for recursively solving the pricing sub-problems. In a binary case (like the TKP), the Recursive DWR method can be performed in such a way that the only two components needed during the optimization are a Linear Programming solver and an algorithm for solving Knapsack Problems. The Recursive DWR allows us to solve Temporal Knapsack Problem instances through computation of strong dual bounds, which could not be obtained by exploiting the best-known previous approach based on DWR. c © 2011 Published by Elsevier Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncommon Dantzig-Wolfe Reformulation for the Temporal Knapsack Problem

We study a natural generalization of the knapsack problem, in which each item exists only for a given time interval. One has to select a subset of the items (as in the classical case), guaranteeing that for each time instant the set of existing selected items has total weight not larger than the knapsack capacity. We focus on the exact solution of the problem, noting that prior to our work the ...

متن کامل

Dantzig Wolfe decomposition and objective function convexification for binary quadratic problems: the cardinality constrained quadratic knapsack case

The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig-Wolfe decomposition and Quadratic Convex Reformulation principles. As a representative case study, we apply them to a cardinality constrained quadratic knapsack problem, providing extensive experimental insights. ...

متن کامل

Partial Convexification of General MIPs by Dantzig-Wolfe Reformulation

Dantzig-Wolfe decomposition is well-known to provide strong dual bounds for specially structured mixed integer programs (MIPs) in practice. However, the method is not implemented in any state-of-the-art MIP solver: it needs tailoring to the particular problem; the decomposition must be determined from the typical bordered block-diagonal matrix structure; the resulting column generation subprobl...

متن کامل

Exact Methods for Recursive Circle Packing

Packing rings into a minimum number of rectangles is an optimization problem which appears naturally in the logistics operations of the tube industry. It encompasses two major difficulties, namely the positioning of rings in rectangles and the recursive packing of rings into other rings. This problem is known as the Recursive Circle Packing Problem (RCPP). We present the first exact method for ...

متن کامل

Dantzig-Wolfe Reformulations for the Stable Set Problem

Dantzig-Wolfe reformulation of an integer program convexifies a subset of the constraints, which yields an extended formulation with a potentially stronger linear programming (LP) relaxation than the original formulation. This paper is part of an endeavor to understand the strength of such a reformulation in general. We investigate the strength of Dantzig-Wolfe reformulations of the classical e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2016